Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Biol Macromol ; 242(Pt 4): 125190, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20230951

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 µg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.


Subject(s)
Epitopes, B-Lymphocyte , Immunodominant Epitopes , Animals , Swine , Mice , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing
2.
Funct Integr Genomics ; 23(2): 107, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2307860

ABSTRACT

Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Vaccines , Animals , Mice , Helicobacter pylori/genetics , Immunodominant Epitopes , Helicobacter Infections/prevention & control , Molecular Docking Simulation , Escherichia coli , Epitopes/genetics
3.
Front Immunol ; 14: 1146196, 2023.
Article in English | MEDLINE | ID: covidwho-2287498

ABSTRACT

The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Pandemics , Proteome , T-Lymphocytes , Immunodominant Epitopes , Immunity , Receptors, Antigen, T-Cell
4.
Front Immunol ; 13: 1010105, 2022.
Article in English | MEDLINE | ID: covidwho-2233969

ABSTRACT

Introduction: Considering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. Methods: We used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. Results: We found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. Discussion: This peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibody Formation , Immunodominant Epitopes/genetics , Epitopes , Immunoglobulin A , Mutation , Immunoglobulin G
5.
Biotechnol Appl Biochem ; 70(3): 1189-1205, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2172675

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown rapid global spread and has resulted in a significant death toll worldwide. In this study, we aimed to design a multi-epitope vaccine against SARS-CoV-2 based on structural proteins S, M, N, and E. We identified B- and T-cell epitopes and then the antigenicity, toxicity, allergenicity, and similarity of predicted epitopes were analyzed. T-cell epitopes were docked with corresponding HLA alleles. Consequently, the selected T- and B-cell epitopes were included in the final construct. All selected epitopes were connected with different linkers and flagellin and pan-HLA DR binding epitopes (PADRE) as an adjuvant were used in the vaccine construct. Furthermore, molecular docking was used to evaluate the complex between the final vaccine construct and two alleles, HLA-A*02:01 and HLA-DRB1*01:01. Finally, codons were optimized for in silico cloning into pET28a(+) vector using SnapGene. The final vaccine construct comprised 11 CTL, HTL, and B-cell epitopes corresponding to 394 amino acid residues. In silico evaluation showed that the designed vaccine might potentially promote an immune response. Further in vivo preclinical and clinical testing is required to determine the safety and efficacy of the designed vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Immunodominant Epitopes/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , COVID-19 Vaccines/genetics , Molecular Docking Simulation , Computational Biology/methods
6.
Sci Rep ; 13(1): 782, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2186086

ABSTRACT

Profiling of the antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins in African populations is scarce. Here, we performed a detailed IgM and IgG epitope mapping study against 487 peptides covering SARS-CoV-2 wild-type structural proteins. A panel of 41 pre-pandemic and 82 COVID-19 RT-PCR confirmed sera from Madagascar and Senegal were used. We found that the main 36 immunodominant linear epitopes identified were (i) similar in both countries, (ii) distributed mainly in the Spike and the Nucleocapsid proteins, (iii) located outside the RBD and NTD regions where most of the reported SARS-CoV-2 variant mutations occur, and (iv) identical to those reported in European, North American, and Asian studies. Within the severe group, antibody levels were inversely correlated with the viral load. This first antibody epitope mapping study performed in patients from two African countries may be helpful to guide rational peptide-based diagnostic assays or vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Epitope Mapping , Antibodies, Viral , Immunodominant Epitopes , Senegal
7.
Cell Rep ; 42(1): 111995, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177162

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , COVID-19/immunology , Epitopes, T-Lymphocyte/genetics , Immunodominant Epitopes/genetics , SARS-CoV-2/genetics
8.
Front Immunol ; 13: 960985, 2022.
Article in English | MEDLINE | ID: covidwho-2154722

ABSTRACT

One of the primary tasks in vaccine design and development of immunotherapeutic drugs is to predict conformational B-cell epitopes corresponding to primary antibody binding sites within the antigen tertiary structure. To date, multiple approaches have been developed to address this issue. However, for a wide range of antigens their accuracy is limited. In this paper, we applied the transfer learning approach using pretrained deep learning models to develop a model that predicts conformational B-cell epitopes based on the primary antigen sequence and tertiary structure. A pretrained protein language model, ESM-1v, and an inverse folding model, ESM-IF1, were fine-tuned to quantitatively predict antibody-antigen interaction features and distinguish between epitope and non-epitope residues. The resulting model called SEMA demonstrated the best performance on an independent test set with ROC AUC of 0.76 compared to peer-reviewed tools. We show that SEMA can quantitatively rank the immunodominant regions within the SARS-CoV-2 RBD domain. SEMA is available at https://github.com/AIRI-Institute/SEMAi and the web-interface http://sema.airi.net.


Subject(s)
COVID-19 , Vaccines , Antigens , Epitopes, B-Lymphocyte , Humans , Immunodominant Epitopes , Machine Learning , SARS-CoV-2
9.
Nat Commun ; 13(1): 6387, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087208

ABSTRACT

The emergence of the SARS-CoV-2 Omicron variant has raised concerns of escape from vaccine-induced immunity. A number of studies have demonstrated a reduction in antibody-mediated neutralization of the Omicron variant in vaccinated individuals. Preliminary observations have suggested that T cells are less likely to be affected by changes in Omicron. However, the complexity of human leukocyte antigen genetics and its impact upon immunodominant T cell epitope selection suggests that the maintenance of T cell immunity may not be universal. In this study, we describe the impact that changes in Omicron BA.1, BA.2 and BA.3 have on recognition by spike-specific T cells. These T cells constitute the immunodominant CD8+ T cell response in HLA-A*29:02+ COVID-19 convalescent and vaccinated individuals; however, they fail to recognize the Omicron-encoded sequence. These observations demonstrate that in addition to evasion of antibody-mediated immunity, changes in Omicron variants can also lead to evasion of recognition by immunodominant T cell responses.


Subject(s)
COVID-19 , Immunodominant Epitopes , Humans , SARS-CoV-2/genetics , CD8-Positive T-Lymphocytes , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
10.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1964011

ABSTRACT

Mycoplasma hyopneumoniae (Mhp), the primary pathogen causing Mycoplasma pneumonia of swine (MPS), brings massive economic losses worldwide. Genomic variability and post-translational protein modification can enhance the immune evasion of Mhp, which makes MPS prone to recurrent outbreaks on farms, even with vaccination or other treatments. The reverse vaccinology pipeline has been developed as an attractive potential method for vaccine development due to its high efficiency and applicability. In this study, a multi-epitope vaccine for Mhp was developed, and its immune responses were evaluated in mice and piglets. Genomic core proteins of Mhp were retrieved through pan-genome analysis, and four immunodominant antigens were screened by host homologous protein removal, membrane protein screening, and virulence factor identification. One immunodominant antigen, AAV27984.1 (membrane nuclease), was expressed by E. coli and named rMhp597. For epitope prioritization, 35 B-cell-derived epitopes were identified from the four immunodominant antigens, and 10 MHC-I and 6 MHC-II binding epitopes were further identified. The MHC-I/II binding epitopes were merged and combined to produce recombinant proteins MhpMEV and MhpMEVC6His, which were used for animal immunization and structural analysis, respectively. Immunization of mice and piglets demonstrated that MhpMEV could induce humoral and cellular immune responses. The mouse serum antibodies could detect all 11 synthetic epitopes, and the piglet antiserum suppressed the nuclease activity of rMhp597. Moreover, piglet serum antibodies could also detect cultured Mhp strain 168. In summary, this study provides immunoassay results for a multi-epitope vaccine derived from the reverse vaccinology pipeline, and offers an alternative vaccine for MPS.


Subject(s)
Mycoplasma hyopneumoniae , Pneumonia of Swine, Mycoplasmal , Animals , Bacterial Vaccines , Epitopes , Escherichia coli , Immunity, Cellular , Immunodominant Epitopes , Mycoplasma hyopneumoniae/genetics , Pneumonia of Swine, Mycoplasmal/prevention & control , Swine
11.
Front Immunol ; 13: 773652, 2022.
Article in English | MEDLINE | ID: covidwho-1742214

ABSTRACT

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods: Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results: We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion: Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Aged , Antibodies, Viral/blood , Broadly Neutralizing Antibodies , Cross Reactions , Female , Humans , Immunity, Humoral , Immunodominant Epitopes/immunology , Male , Middle Aged , Time Factors
12.
EBioMedicine ; 76: 103818, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1634218

ABSTRACT

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Subject(s)
Antibodies, Monoclonal/immunology , Antineoplastic Agents, Immunological/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antigenic Drift and Shift , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/virology , Disease Models, Animal , Humans , Kinetics , Lung/pathology , Mice , Mutation , Neutralization Tests , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
13.
Nat Commun ; 13(1): 19, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616981

ABSTRACT

T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Jurkat Cells , K562 Cells , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods
14.
Immunogenetics ; 74(2): 213-229, 2022 04.
Article in English | MEDLINE | ID: covidwho-1616116

ABSTRACT

Cross-reactivity between different human coronaviruses (HCoVs) might contribute to COVID-19 outcomes. Here, we aimed to predict conserved peptides among different HCoVs that could elicit cross-reacting B cell and T cell responses. Three hundred fifty-one full-genome sequences of HCoVs, including SARS-CoV-2 (51), SARS-CoV-1 (50), MERS-CoV (50), and common cold species OC43 (50), NL63 (50), 229E (50), and HKU1 (50) were downloaded aligned using Geneious Prime 20.20. Identification of epitopes in the conserved regions of HCoVs was carried out using the Immune Epitope Database (IEDB) to predict B- and T-cell epitopes. Further, we identified sequences that bind multiple common MHC and modeled the three-dimensional structures of the protein regions. The search yielded 73 linear and 35 discontinuous epitopes. A total of 16 B-cell and 19 T-cell epitopes were predicted through a comprehensive bioinformatic screening of conserved regions derived from HCoVs. The 16 potentially cross-reactive B-cell epitopes included 12 human proteins and four viral proteins among the linear epitopes. Likewise, we identified 19 potentially cross-reactive T-cell epitopes covering viral proteins. Interestingly, two conserved regions: LSFVSLAICFVIEQF (NSP2) and VVHSVNSLVSSMEVQSL (spike), contained several matches that were described epitopes for SARS-CoV. Most of the predicted B cells were buried within the SARS-CoV-2 protein regions' functional domains, whereas T-cell stretched close to the functional domains. Additionally, most SARS-CoV-2 predicted peptides (80%) bound to different HLA types associated with autoimmune diseases. We identified a set of potential B cell and T cell epitopes derived from the HCoVs that could contribute to different diseases manifestation, including autoimmune disorders.


Subject(s)
Autoimmune Diseases , COVID-19 , Autoimmunity , Epitopes, T-Lymphocyte , Humans , Immunodominant Epitopes , SARS-CoV-2
15.
Pathog Dis ; 80(1)2022 02 09.
Article in English | MEDLINE | ID: covidwho-1612517

ABSTRACT

Given the emergence of SARS-CoV-2 virus as a life-threatening pandemic, identification of immunodominant epitopes of the viral structural proteins, particularly the nucleocapsid (NP) protein and receptor-binding domain (RBD) of spike protein, is important to determine targets for immunotherapy and diagnosis. In this study, epitope screening was performed using a panel of overlapping peptides spanning the entire sequences of the RBD and NP proteins of SARS-CoV-2 in the sera from 66 COVID-19 patients and 23 healthy subjects by enzyme-linked immunosorbent assay (ELISA). Our results showed that while reactivity of patients' sera with reduced recombinant RBD protein was significantly lower than the native form of RBD (P < 0.001), no significant differences were observed for reactivity of patients' sera with reduced and non-reduced NP protein. Pepscan analysis revealed weak to moderate reactivity towards different RBD peptide pools, which was more focused on peptides encompassing amino acids (aa) 181-223 of RBD. NP peptides, however, displayed strong reactivity with a single peptide covering aa 151-170. These findings were confirmed by peptide depletion experiments using both ELISA and western blotting. Altogether, our data suggest involvement of mostly conformational disulfide bond-dependent immunodominant epitopes in RBD-specific antibody response, while the IgG response to NP is dominated by linear epitopes. Identification of dominant immunogenic epitopes in NP and RBD of SARS-CoV-2 could provide important information for the development of passive and active immunotherapy as well as diagnostic tools for the control of COVID-19 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , Nucleocapsid/immunology , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Amino Acid Motifs , Antibodies, Viral/blood , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunodominant Epitopes/chemistry , Iran , Male , Middle Aged , Pandemics , Peptides/immunology , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Proteins/immunology
16.
Cell Rep ; 37(13): 110167, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1596401

ABSTRACT

Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , Cell Culture Techniques , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Viral/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
17.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1588149

ABSTRACT

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Vaccination , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/blood , Clone Cells , Cohort Studies , Cytokines/metabolism , Female , Germinal Center/immunology , HLA-DP beta-Chains/immunology , Humans , Immunodominant Epitopes/immunology , Jurkat Cells , Lymph Nodes/metabolism , Male , Middle Aged , Peptides/chemistry , Peptides/metabolism , Protein Multimerization , Receptors, Antigen, T-Cell/metabolism
18.
Cell Rep ; 38(2): 110214, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588141

ABSTRACT

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology
19.
Commun Biol ; 4(1): 1365, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550353

ABSTRACT

SARS-CoV-2-specific CD8+ T cells are scarce but detectable in unexposed healthy donors (UHDs). It remains unclear whether pre-existing human coronavirus (HCoV)-specific CD8+ T cells are converted to functionally competent T cells cross-reactive to SARS-CoV-2. Here, we identified the HLA-A24-high binding, immunodominant epitopes in SARS-CoV-2 spike region that can be recognized by seasonal coronavirus-specific CD8+ T cells from HLA-A24+ UHDs. Cross-reactive CD8+ T cells were clearly reduced in patients with hematological malignancy, who are usually immunosuppressed, compared to those in UHDs. Furthermore, we showed that CD8+ T cells in response to a selected dominant epitope display multifunctionality and cross-functionality across HCoVs in HLA-A24+ donors. Cross-reactivity of T-cell receptors isolated from them exhibited selective diversity at the single-cell level. Taken together, when stimulated well by immunodominant epitopes, selective pre-existing CD8+ T cells with high functional avidity may be cross-reactive against SARS-CoV-2.


Subject(s)
Antigens, Viral/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cross Reactions , Humans
20.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: covidwho-1545628

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL